Fast, Efficient and Scalable Solutions
Explore the comprehensive NCERT Textbook Solutions for Class IX.
Factor theorem says that p(x) be any polynomial of degree greater than or equal to one and let 'a' be any real number, then
(i) (x + y)2 = x2 + 2xy + y2
(ii) (x - y)2 = x2 - 2xy + y2
(iii) (x + y) (x - y) = x2 - y2
(iv) (x + a) (x + b) = x2 + (a + b)x + ab
(v) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(vi) (x + y)3 = x3 + y3 + 3xy(x + y) = x3+ y3 + 3x2y + 3xy2
(vii) (x - y)3 = x3- y3 - 3xy(x - y) = x3 - y3 - 3x2y + 3xy2
(viii) x3 + y3 = (x + y)(x2 – xy + y2)
(ix) x3 - y3 = (x - y)(x2 + xy + y2)
(x) x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)
x3 + y3 + z3 = 3xyz , if x + y + z = 0
Use suitable identities to find the following products:
(i) (x +4) (x +10)
Solution :
Given , (x +4) (x +10)
Using suitable identity : (x + a) (x + b) = x2 + (a + b)x + ab
Here, we have a = 4 and b = 10
Substituting the value of a and b in given expression, we get;
$$ (x + 4)(x + 10) $$
$$⇒ x^2 + (4 + 10) x + 4 × 10 $$
$$⇒ x^2 + 14 x + 40 $$
Use suitable identities to find the following products:
(ii) (x + 8)(x – 10)
Solution :
Given , (x + 8)(x – 10)
Using suitable identity : (x + a) (x + b) = x2 + (a + b)x + ab
Here, we have a = 8 and b = (-10)
Substituting the value of a and b in given expression, we get;
$$ (x + 8)(x + (-10)) $$
$$⇒ x^2 + [8 + (-10)] x + [ 8 × (-10)] $$
$$⇒ x^2 + (-2)x -80 $$
$$⇒ x^2 - 2x - 80 $$
Use suitable identities to find the following products:
(iii) (x + 8)(x – 10)
Solution :
Given , (3x + 4)(3x – 5)
Using suitable identity : (x + a) (x + b) = x2 + (a + b)x + ab
Here, we have x = 3x , a = 4 and b = (-5)
Substituting the value of x, a and b in given expression, we get;
$$ (3x + 4)(3x + (-5)) $$
$$⇒ 3x^2 + [4 + (-5)] 3x + [4 × (-5)] $$
$$⇒ 9x^2 + (-1)3x - 20 $$
$$⇒ 9x^2 - 3x - 20 $$
Use suitable identities to find the following products:
(iv) (y2 + ${3 \over 2} $)(y2 – ${3 \over 2} $)
Solution :
Given , (y2 + ${3 \over 2} $)(y2 – ${3 \over 2} $)
Using suitable identity : (a + b) (a - b) = a2 - b2
Here, we have a = y2 , b = 3/2
Substituting the value of a and b in given expression, we get;
$$⇒ (y^2)^2 - ({3 \over 2})^2 $$
$$⇒ y^4 - ({9 \over 4})$$
Use suitable identities to find the following products:
(v) (3 – 2x)(3 + 2x)
Solution :
Given , (3 – 2x)(3 + 2x)
Using suitable identity : (a + b) (a - b) = a2 - b2
Here, we have a = 3 , b = 2x
Substituting the value of a and b in given expression, we get;
$$⇒ (3)^2 - (2x)^2 $$
$$⇒ 9 - 4x^2 $$
Evaluate the following products without multiplying directly:
(i) 103 × 107
Solution :
Given , 103 × 107
We can write : = ( 100 + 3 ) ( 100 + 7 )
Using the identity : (x + a) (x + b) = x2 + (a + b)x + ab
Here, we have x = 100, a = 3 and b = 7
Substituting the value of x, a and b in given expression, we get;
$$ ( 100 + 3 ) ( 100 + 7 ) $$
$$⇒ (100)^2 + [3 + 7]× 100 + [3 × 7] $$
$$⇒ 10000 + (10)× 100 + 21 $$
$$⇒ 10000 + 1000 + 21 $$
$$⇒ 11021 $$
Evaluate the following products without multiplying directly:
(ii) 95 × 96
Solution :
Given , 95 × 96
We can write : = ( 90 + 5 ) ( 90 + 6 )
Using the identity : (x + a) (x + b) = x2 + (a + b)x + ab
Here, we have x = 90, a = 5 and b = 6
Substituting the value of x, a and b in given expression, we get;
$$ ( 90 + 5 ) ( 90 + 6 ) $$
$$⇒ (90)^2 + [5 + 6]× 90 + [5 × 6] $$
$$⇒ 8100 + (11)× 90 + 30 $$
$$⇒ 8100 + 990 + 30 $$
$$⇒ 9120 $$
Evaluate the following products without multiplying directly:
(iii) 104 × 96
Solution :
Given , 104 × 96
We can write : = ( 100 + 4 ) ( 100 - 4 )
Using the identity : (a + b) (a - b) = a2 - b2
Here, we have, a = 100 and b = 4
Substituting the value of x, a and b in given expression, we get;
$$ ( 100 + 4 ) ( 100 - 4 ) $$
$$⇒ (100)^2 - (4)^2 $$
$$⇒ 10000 - 16 $$
$$⇒ 9984 $$
Factorise the following using appropriate identities:
(i) 9x2 + 6xy + y2
Solution :
Given , 9x2 + 6xy + y2
$$⇒ 3^2x^2 + 6xy +y^2 $$
$$⇒ (3x)^2 + 6xy +(y)^2 $$
$$⇒ (3x)^2 + 2× (3x)(y) +(y)^2 $$
This expression fits the form of the Perfect Square Trinomial (Addition) : a2 + 2ab + b2 = (a + b)2
so a = 3x and b = y
Therefore, the factorisation is:
$$⇒ (3x + y )^2 $$
$$⇒(3x + y )(3x + y )$$
Factorise the following using appropriate identities:
(ii) 4y2 - 4y + 1
Solution :
Given , 4y2 - 4y + 1
$$⇒ 2^2y^2 - 4y + 1^2 $$
$$⇒ (2y)^2 - 4y +(1)^2 $$
$$⇒ (2y)^2 - 2× (2y)(1) +(1)^2 $$
This expression fits the form of the Perfect Square Trinomial (Subtraction) : a2 - 2ab + b2 = (a - b)2
so a = 2y and b = 1
Therefore, the factorisation is:
$$⇒ (2y - 1 )^2 $$
$$⇒(2y - 1 )(2y - 1 )$$
Factorise the following using appropriate identities:
(iii) x2 - ${y^2 \over 100} $
Solution :
Given , x2 - ${y^2 \over 100} $
$$⇒ x^2 - {y^2 \over 10^2} $$
$$⇒ x^2 - ({y \over 10})^2 $$
This expression fits the form of the Difference of Squares : a2 - b2 = (a + b) (a - b)
so a = x and b = ${y \over 10} $
Therefore, the factorisation is:
$$⇒ (x + {y \over 10})(x - {y \over 10}) $$
Expand each of the following, using suitable identities :
(i) (x + 2y + 4z)2
Solution :
Given , (x + 2y + 4z)2
To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = x and b = 2y , and c = 4z
Substituting the value of a and b , c in given expression, we get;
$⇒ (x + 2y + 4z)^2 $
$⇒ (x)^2 + (2y)^2 + (4z)^2 $+$ 2(x)(2y) + 2(2y)(4z) + 2(4z)(x) $
$⇒ x^2 + 4y^2 + 16z^2 + 4xy + 16yz + 8zx $
Expand each of the following, using suitable identities :
(ii) (2x - y + z)2
Solution :
Given , (2x - y + z)2
To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = 2x and b = -y , and c = z
Substituting the value of a and b , c in given expression, we get;
$⇒ (2x - y + z)^2 $
$⇒ (2x)^2 + (-y)^2 + (z)^2 $ + $ 2(2x)(-y) + 2(-y)(z) + 2(z)(2x) $
$⇒ 4x^2 + y^2 + z^2 - 4xy - 2yz + 4zx $
Expand each of the following, using suitable identities :
(iii) (–2x + 3y + 2z)2
Solution :
Given , (–2x + 3y + 2z)2
To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = -2x and b = 3y , and c = 2z
Substituting the value of a and b , c in given expression, we get;
$⇒ (–2x + 3y + 2z)^2 $
$⇒ (-2x)^2 + (3y)^2 + (2z)^2 $+$ 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x) $
$⇒ 4x^2 + 9y^2 + 4z^2 - 12xy + 12yz - 8zx $
Expand each of the following, using suitable identities :
(iv) (3a - 7b -c)2
Solution :
Given , (3a - 7b -c)2
To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = 3a and b = -7b , and c = -c
Substituting the value of a and b , c in given expression, we get;
$⇒ (3a -7b -c)^2 $
$⇒ (3a)^2 + (-7b)^2 + (-c)^2 $ +$ 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a) $
$⇒ 9a^2 + 49b^2 + c^2 - 42ab + 14bc - 6ca $
Expand each of the following, using suitable identities :
(v) (– 2x + 5y – 3z)2
Solution :
Given , (– 2x + 5y – 3z)2
To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = -2x and b = 5y ,and c = -3z
Substituting the value of a and b , c in given expression, we get;
$⇒ (– 2x + 5y – 3z)^2 $
$⇒ (-2x)^2 + (5y)^2 + (-3z)^2 $ + $ 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x) $
$⇒ 4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx $
Expand each of the following, using suitable identities :
(vi) (${1 \over 4} $a - ${1 \over 2} $b + 1)2
Solution :
Given , (${1 \over 4} $a - ${1 \over 2} $b + 1)2
To expand each of the following expressions, we'll use the algebraic identity for the square of a trinomial:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = ${1 \over 4}$a , b = - ${1 \over 2} $b ,and c = 1
Substituting the value of a and b , c in given expression, we get;
$⇒ ({1 \over 4}a -{1 \over 2}b + 1)^2 $
$⇒ ({1 \over 4}a)^2 + (-{1 \over 2}b)^2 + (1)^2 $ $+ 2({1 \over 4}a)(-{1 \over 2}b) + 2(-{1 \over 2}b)(1) + 2(1)({1 \over 4}a) $
$⇒ {1 \over 16}a^2 +{1 \over 4}b^2 + 1 $ $ -{1 \over 4}ab -b + {1 \over 2}a $
Factorise:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Solution :
Given , 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
This can be re-written as:
$⇒ (2^2x^2) + (3^2y^2) + ( 4^2z^2) $ +$ 12xy – 24yz – 16xz $
$⇒ (2x)^2 + (3y)^2 + (4z)^2 $ + $ 12xy – 24yz – 16xz $
It can be observed that the coefficient value of yz and xz are negative, and the z is common in both term .
Hence ,
$⇒ (2x)^2 + (3y)^2 + (- 4z)^2 $ + $ 12xy – 24yz – 16xz $
$⇒ (2x)^2 + (3y)^2 + (- 4z)^2 $ $ + 2 × (2x) (3y) + 2 ×(3y)(- 4z)$ $+ 2 × (- 4z)(2x) $
Using suitable identity : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Let, a = 2x , b = 3y , c = -4z
Substituting the value of a and b , c in given expression, we get;
$⇒ (2x + 3y – 4z)^2 $
Thus, the factorization is
$⇒ (2x + 3y – 4z) (2x + 3y – 4z) $
Factorise:
(ii) 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz.
Solution :
Given , 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz.
This can be re-written as:
$⇒ (√2^2)x^2 + y^2 + (2√2)^2z^2 $ - $ 2√2 xy + 4√2 yz – 8xz $
$⇒ (√2x)^2 + (y)^2 + (2√2z)^2 $ - $ 2√2 xy + 4√2 yz – 8xz $
It can be observed that the coefficient value of xy and xz are negative, and the x is common in both term .
Hence ,
$⇒ (-√2x)^2 + (y)^2 + (2√2z)^2 $ - $ 2√2 xy + 4√2 yz – 8xz $
$⇒ (-√2x)^2 + (y)^2 + (2√2z)^2 $ $+ 2 × (-√2x) (y) + 2 ×(y)(2√2z)$ $+ 2 × (-√2x)(2√2z) $
Let, a = -√2x , b = y , c = 2√2z
Using suitable identity : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
Substituting the value of a and b , c in given expression, we get;
$⇒ (-√2x + y +2√2z)^2 $
Thus, the factorization is
$ (-√2x + y +2√2z)$ $(-√2x + y +2√2z) $
Write the following cubes in expanded form :
(i) (2x + 1)3
Solution :
Given , (2x + 1)3
To expand the given cubes, we will use the binomial expansion identities for the Cube of a sum:
(a + b)3 = a3 + b3 + 3ab (a + b)
Let, a = 2x and b = 1
Substituting the value of a and b in given expression, we get;
$⇒ (2x + 1)^3 $
$⇒ (2x)^3 + (1)^3 $ + $ 3×(2x)(1) ×(2x + 1) $
$⇒ 8x^3 + 1 + 6x ×(2x + 1) $
$⇒ 8x^3 + 1 + 12x^2 + 6x $
$⇒ 8x^3 + 12x^2 + 6x + 1 $
Write the following cubes in expanded form :
(ii) (2a – 3b)3
Solution :
Given , (2a – 3b)3
To expand the given cubes, we will use the binomial expansion identities for the Cube of a difference:
(x – y)3 = x3 - y3 - 3xy (x - y)
Let, x = 2a and y = 3b
Substituting the value of x and y in given expression, we get;
$⇒ (2a – 3b)^3 $
$⇒ (2a)^3 - (3b)^3 $ - $ 3×(2a)(3b) × (2a -3b) $
$⇒ 8a^3 - 27b^3 - 18ab × (2a -3b) $
$⇒ 8a^3 - 27b^3 - 36a^2b + 54ab^2 $
Write the following cubes in expanded form :
(iii) (${3 \over 2} $x + 1)3
Solution :
Given , (${3 \over 2} $x + 1)3
To expand the given cubes, we will use the binomial expansion identities for the Cube of a sum:
(a + b)3 = a3 + b3 + 3ab (a + b)
Let, a = ${3 \over 2} $x and b = 1
Substituting the value of a and b in given expression, we get;
$⇒ ({3 \over 2}x + 1)^3 $
$⇒ ({3 \over 2}x)^3 + (1)^3 $ + $ 3×({3 \over 2}x)(1) ×({3 \over 2}x + 1) $
$⇒ {27 \over 8}x^3 + 1 + {9 \over 2}x × ({3 \over 2}x + 1) $
$⇒ {27 \over 8}x^3 + 1 + {27 \over 4}x^2 + {9 \over 2}x $
$⇒ {27 \over 8}x^3 + {27 \over 4}x^2 + {9 \over 2}x + 1 $
Write the following cubes in expanded form :
(iv) (x - ${2 \over 3}y $)3
Solution :
Given , (x - ${2 \over 3}y $)3
To expand the given cubes, we will use the binomial expansion identities for the Cube of a difference:
(a - b)3 = a3 - b3 - 3ab (a - b)
Let, a = x and b = ${2 \over 3}y $
Substituting the value of a and b in given expression, we get;
$⇒ (x - {2 \over 3}y)^3 $
$⇒ (x)^3 - ({2 \over 3}y)^3 $ - $ 3×(x)({2 \over 3}y) ×(x - {2 \over 3}y) $
$⇒ x^3 - {8 \over 27}y^3 $ - $ 2xy × (x - {2 \over 3}y) $
$⇒ x^3 - {8 \over 27}y^3 $ - $ 2x^2y + {4 \over 3}xy^2 $
$⇒ x^3 - 2x^2y $ - $ {8 \over 27}y^3 + {4 \over 3}xy^2 $
Evaluate the following using suitable identities:
(i) (99)3
Solution :
Given , (99)3
We can write 99 as 100−1.
= ( 100 - 1 )3
We'll use the identity for the cube of a difference : (a - b)3 = a3 - b3 - 3ab (a - b)
Let, a = 100 and b = 1
Substituting the value of a and b in given expression, we get;
$⇒ ( 100 - 1 )^3 $
$⇒ (100)^3 - (1)^3 $ - $ 3×(100)(1) ×(100 - 1) $
$⇒ 1000000 - 1 - 300 × 99 $
$⇒ 1000000 - 1 - 297100 $
$⇒ 970299 $
Evaluate the following using suitable identities:
(ii) (102)3
Solution :
Given , (102)3
We can write 102 as 100 + 2.
= ( 100 + 2 )3
We'll use the identity for the cube of a sum : (a + b)3 = a3 + b3 + 3ab (a + b)
Let, a = 100 and b = 2
Substituting the value of a and b in given expression, we get;
$⇒ ( 100 + 2 )^3 $
$⇒ (100)^3 + (2)^3 $ + $ 3×(100)(2) ×(100 + 2) $
$⇒ 1000000 + 8 + 600 × 102 $
$⇒ 1000008 + 61200 $
$⇒ 1061208 $
Evaluate the following using suitable identities:
(iii) (998)3
Solution :
Given , (998)3
We can write 99 as 1000−2.
= ( 1000 - 2 )3
We'll use the identity for the cube of a difference : (a - b)3 = a3 - b3 - 3ab (a - b)
Let, a = 1000 and b = 2
Substituting the value of a and b in given expression, we get;
$⇒ ( 1000 - 2 )^3 $
$⇒ (1000)^3 - (2)^3 $ - $ 3×(1000)(2) ×(1000 - 2) $
$⇒ 1000000000 - 8 - 6000 × 998 $
$⇒ 1000000000 - 8 - 5988000 $
$⇒ 1000000000 - 5988008 $
$⇒ 994011992 $
Factorize each of the following :
(i) 8a3 + b3 + 12a2b + 6ab2
Solution :
Given , 8a3 + b3 + 12a2b + 6ab2
This can be re-written as:
$⇒ (2^3)a^3 + b^3 $ + $ 12a^2b + 6ab^2 $
$⇒ (2a)^3 + (b)^3 $ + $ 12a^2b + 6ab^2 $
$⇒ (2a)^3 + (b)^3 $ + $ 6ab( 2a+ b) $
$⇒ (2a)^3 + (b)^3 $ + $ 3 × 2a × b ( 2a+ b) $
Let, x = 2a , y = b
Using suitable identity : (x + y)3 = x3 + y3 + 3xy (x + y)
Substituting the value of x and y in given expression, we get;
$⇒ (2a +b)^3 $
Thus, the factorization is
$⇒ (2a + b)(2a + b)(2a + b) $
Factorize each of the following :
(ii) 8a3 - b3 - 12a2b + 6ab2
Solution :
Given , 8a3 - b3 - 12a2b + 6ab2
This can be re-written as:
$⇒ (2^3)a^3 - b^3 $ - $ 12a^2b + 6ab^2 $
$⇒ (2a)^3 - (b)^3 $ - $ 12a^2b + 6ab^2 $
$⇒ (2a)^3 - (b)^3 $ - $ 6ab( 2a - b) $
$⇒ (2a)^3 - (b)^3 $ - $ 3 × 2a × b( 2a - b) $
Let, x = 2a , y = b
Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)
Substituting the value of x and y in given expression, we get;
$⇒ (2a - b)^3 $
Thus, the factorization is
$⇒ (2a - b)(2a - b)(2a - b) $
Factorize each of the following :
(iii) 27 – 125a3 – 135a + 225a2
Solution :
Given , 27 – 125a3 – 135a + 225a2
This can be re-written as:
$⇒ (3)^3 - (5^3)a^3 $ - $ 135a + 225a^2 $
$⇒ (3)^3 - (5a)^3 $ - $ 135a + 225a^2 $
$⇒ (3)^3 - (5a)^3 $ - $ 45a( 3 - 5a) $
$⇒ (3)^3 - (5a)^3 $ - $ 3 × 3 × 5a ( 3 - 5a) $
Let, x = 3 , y = 5a
Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)
Substituting the value of x and y in given expression, we get;
$⇒ (3 - 5a)^3 $
Thus, the factorization is
$⇒ (3 - 5a)(3 - 5a)(3 - 5a) $
Factorize each of the following :
(iv) 64a3 – 27b3 - 144a2b + 108ab2
Solution :
Given , 64a3 – 27b3 - 144a2b + 108ab2
This can be re-written as:
$⇒ (4^3)a^3 - (3^3)b^3 $ - $ 144a^2b + 108ab^2 $
$⇒ (4a)^3 - (3b)^3 $ - $ 144a^2b + 108ab^2 $
$⇒ (4a)^3 - (3b)^3 $ - $ 36ab( 4a - 3b) $
$⇒ (4a)^3 - (3b)^3 $ - $ 3 × 4a × 3b( 4a - 3b) $
Let, x = 4a , y = 3b
Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)
Substituting the value of x and y in given expression, we get;
$⇒ (4a - 3b)^3 $
Thus, the factorization is
$⇒ (4a - 3b)(4a - 3b)(4a - 3b) $
Factorize each of the following :
(v) 27p3 – ${1 \over 216} $ - ${9 \over 2} $p2 + ${1 \over 4} $p
Solution :
Given , 27p3 – ${1 \over 216} $ - ${9 \over 2} $p2 + ${1 \over 4} $p
This can be re-written as:
$⇒ (3^3)p^3 - ({1^3 \over {6^3}}) $ - $ {9 \over 2}p^2 + {1 \over 4}p $
$⇒ (3p)^3 - ({1 \over 6})^3 $ - ${9 \over 2}p^2 + {1 \over 4}p $
$⇒ (3p)^3 - ({1 \over 6})^3 $ - $ 3 × 3p × {1 \over 6}( 3p - {1 \over 6}) $
Let, x = 3p , y = ${1 \over 6} $
Using suitable identity : (x - y)3 = x3 - y3 - 3xy (x - y)
Substituting the value of x and y in given expression, we get;
$⇒ (3p - {1 \over 6})^3 $
Thus, the factorization is
$⇒ (3p - {1 \over 6})(3p - {1 \over 6})(3p - {1 \over 6}) $
Verify:
(i) x3 + y3 = (x + y) (x2 – xy + y2)
Solution :
Given , x3 + y3 = (x + y) (x2 – xy + y2)
Consider R.H.S.
(x + y) (x2 – xy + y2)
$⇒ x × (x^2 - xy + y^2) + y × (x^2 - xy + y^2) $
Expand by multiplying x with the second trinomial, and then y with the second trinomial:
$⇒ x^3 - x^2y + xy^2 + x^2y - xy^2 + y^3 $
Distribute x and y into the parentheses
$⇒ x^3 - x^2y + x^2y + xy^2 - xy^2 + y^3 $
Group and cancel the like terms
$⇒ x^3 + y^3 $
= L. H.S.
Since R. H.S. = x3 + y3 = L. H.S., the identity is verified.
Verify:
(ii) x3 - y3 = (x - y) (x2 + xy + y2)
Solution :
Given , x3 - y3 = (x - y) (x2 + xy + y2)
Consider R.H.S.
(x - y) (x2 + xy + y2)
$⇒ x × (x^2 + xy + y^2) - y × (x^2 + xy + y^2) $
Expand by multiplying x with the second trinomial, and then -y with the second trinomial:
$⇒ x^3 + x^2y + xy^2 - x^2y - xy^2 - y^3 $
Distribute x and y into the parentheses
$⇒ x^3 + x^2y - x^2y + xy^2 - xy^2 - y^3 $
Group and cancel the like terms
$⇒ x^3 - y^3 $
= L. H.S.
Since R. H.S. = x3 - y3 = L. H.S., the identity is verified.
Factorise each of the following:
(i) 27 y3 + 125z3
Solution :
Given , 27 y3 + 125z3
This can be re-written as:
$⇒ (3^3)y^3 + (5^3)z^3 $
$⇒ (3y)^3 + (5z)^3 $
Let, a = 3y , b = 5z
Using suitable identity : a3 + b3 = (a + b) (a2 – ab + b2)
Substituting the value of a and b in given expression, we get;
$⇒ 27y^3 + 125z^3 $
$⇒ (3y + 5z) [(3y)^2 – (3y × 5z) + (5z)^2] $
$⇒ (3y + 5z) ( 9y^2 – 15yz + 25z^2) $
Thus, the factorization is
(3y + 5z) ( 9y2 – 15yz + 25z2)
Factorise each of the following:
(ii) 64m3 - 343n3
Solution :
Given , 64m3 - 343n3
This can be re-written as:
$⇒ (4^3)m^3 - (7^3)n^3 $
$⇒ (4m)^3 - (7n)^3 $
Let, a = 4m , b = 7n
Using suitable identity : a3 - b3 = (a - b) (a2 + ab + b2)
Substituting the value of a and b in given expression, we get;
$⇒ 64m^3 - 343n^3 $
$⇒ (4m - 7n) [(4m )^2 + (4m ×7n) + (7n)^2] $
$⇒ (4m - 7n) ( 16m^2 + 28mn + 49n^2) $
Thus, the factorization is
(4m - 7n) ( 16m2 + 28mn + 49n2)
Factorise :
27 x3 + y3 + z3 -9xyz
Solution :
Given , 27 x3 + y3 + z3 -9xyz
This can be re-written as:
$⇒ (3^3)x^3 + y^3+ z^3 - 9xyz $
$⇒ (3x)^3 + y^3+ z^3 - 3 × 3x × y × z $
Let, x = 3x , y = y and z = z
Using suitable identity :
x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)
$⇒ 27x^3 + y^3+ z^3 - 9xyz $
Substituting the value of x and y and z in given expression, we get;
$⇒ (3x + y + z) $ $[(3x)^2 + y^2 + z^2 – (3x × y) – (y×z) – (z×3x)] $
$⇒ (3x + y + z) $ $[9x^2 + y^2 + z^2 – 3xy – yz – 3zx] $
Thus, the factorization is
(3x + y + z) [9x2 + y2 + z2 – 3xy – yz – 3zx]
Verify that:
$ x^3 + y^3 + z^3 – 3xyz =$ ${1 \over 2}(x + y + z)$ $[(x – y)^2 + (y – z)^2 + (z – x)^2] $
Solution :
Given , $ x^3 + y^3 + z^3 – 3xyz =$ ${1 \over 2}(x + y + z)$ $[(x – y)^2 + (y – z)^2 + (z – x)^2] $
Consider R.H.S.
$ {1 \over 2}(x + y + z) [(x – y)^2 + (y – z)^2 + (z – x)^2] $
Using suitable identity : (x-y)2 = x2 - 2xy + y2
$⇒ {1 \over 2}(x + y + z) $ $[(x^2 + y^2 - 2xy) $ + $(y^2 + z^2 - 2yz) + (z^2+ x^2 - 2zx)] $
$⇒ {1 \over 2}(x + y + z) $ $ (2x^2 + 2y^2 + 2z^2- 2xy - 2yz - 2zx) $
$⇒ {1 \over 2}(x + y + z) $ $ 2 ×(x^2 + y^2 + z^2- xy - yz - zx) $
$⇒ (x + y + z) $ $ (x^2 + y^2 + z^2- xy - yz - zx) $
We know that
x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)
Therefore ,
$ x^3 + y^3 + z^3 – 3xyz $
= L.H.S.
Hence Proved
If x + y + z = 0, show that
x3 + y3 + z3 = 3xyz
Solution :
We know that,: x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz - zx)
Substituting the value of x + y + z = 0, we get;
$⇒ x^3 + y^3+ z^3 - 3xyz $ $ = (0)(x^2 + y^2+ z^2 – xy – yz - zx) $
$⇒ x^3 + y^3+ z^3 - 3xyz = 0 $
$⇒ x^3 + y^3+ z^3 = 3xyz $
Hence Proved.
Without actually calculating the cubes, find the value of each of the following :
(i) (-12)3 + (7)3 + (5)3
Solution :
Given , (-12)3 + (7)3 + (5)3
Let, x = -12 , y = 7 and z = 5
Now , (x + y + z) = (-12) + (7) + (5) = 0
We know that,: if x + y + z = 0 then,
x3 + y3 + z3 = 3xyz
Substituting the value of x and y and z in given expression, we get;
$⇒ (-12)^3 + 7^3+ 5^3 $ $= 3 × (-12) × 7 × 5 $
$⇒ 3 × (-420) $
$⇒ - 1260 $
Therefore, The value of
(-12)3 + (7)3 + (5)3 = -1260
Without actually calculating the cubes, find the value of each of the following :
(ii) 283 + (-15)3 + (-13)3
Solution :
Given , 283 + (-15)3 + (-13)3
Let, x = 28 , y = -15 and z = -13
Now , (x + y + z) = (28) + (-15) + (-13) = 0
We know that,: if x + y + z = 0 then,
x3 + y3 + z3 = 3xyz
Substituting the value of x and y and z in given expression, we get;
$⇒ 28^3 + (-15)^3+ (-13)^3 $ $ = 3 × 28 × (-15) × (-13) $
$= 84 × 195 $
$⇒ 16380 $
Therefore, The value of
283 + (-15)3 + (-13)3 = 16380
Given possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area: 25a2 - 35a + 12
Solution :
Given , Area: 25a2 - 35a + 12
We know that,: Area of rectangle = Length × Breadth ,
Hence, First we shall factorise the given expression
Given , 25a2 - 35a + 12
For quadratic polynomial, We factorize By Splitting the middle term method:
Find 2 numbers p,q such that :
(i) p × q = product of the co-efficient of a2 and the constant term (last term)
(ii) p + q = co-efficient of middle term or a
p × q = 25 × 12 = 300
p + q = -35
By trial and error method,
We get p = -20 and q = -15
Now, splitting the middle term of given polynomial can be written as follows:
$$ = 25a^2 - 20a -15a + 12 $$
( By taking 5a and -3 as common, we get)
$$ = 5a (5a - 4) - 3 (5a - 4) $$
( By taking (5a - 4) as common, we get)
$$ = (5a - 4) (5a - 3) $$
Factors of given polynomial : (5a - 4)(5a - 3)
Therefore,
Length = (5a - 4) and Breadth = (5a - 3)
Or Length = (5a - 3) and Breadth = (5a - 4)
Given possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(ii) Area: 35y2 + 13y - 12
Solution :
Given , Area: 35y2 + 13y - 12
We know that,: Area of rectangle = Length × Breadth ,
Hence, First we shall factorise the given expression
Given , 35y2 + 13y - 12
For quadratic polynomial, We factorize By Splitting the middle term method:
Find 2 numbers p,q such that :
(i) p × q = product of the co-efficient of a2 and the constant term (last term)
(ii) p + q = co-efficient of middle term or a
p × q = 35 × -12 = -420
p + q = 13
By trial and error method,
We get p = 28 and q = -15
Now, splitting the middle term of given polynomial can be written as follows:
$$ = 35y^2 + 28y - 15y - 12 $$
( By taking 7y and -3 as common, we get)
$$ = 7y (5y + 4) - 3 (5y + 4) $$
( By taking (5y + 4) as common, we get)
$$ = (5y + 4) (7y - 3) $$
Factors of given polynomial : (5y + 4) (7y - 3)
Therefore,
Length = (5y + 4) and Breadth = (7y - 3)
Or Length = (7y - 3) and Breadth = (5y + 4)
What are the possible expressions for the dimensions of the cuboids whose volume are given below:
(i) Volume: 3x2 -12x
Solution :
Given , Volume: 3x2 -12x
We know that,: Volume of a cubiod = length × breadth × height
Hence, First we shall factorise the given expression
$⇒ 3x^2 -12x $
$= 3x × (x - 4x) $
$= 3 × x × (x - 4x) $
Therefore,
Possible length, breadth and height are 3x , x , (x-4)
What are the possible expressions for the dimensions of the cuboids whose volume are given below:
(ii) Volume: 12ky2 + 8 ky – 20k
Solution :
Given , Volume: 12ky2 + 8 ky – 20k
We know that,: Volume of a cubiod = length × breadth × height
Hence, First we shall factorise the given expression
$⇒ 12ky^2 + 8 ky – 20k $
$= 4k × (3y^2 + 2y - 5) $
$= 4k × (3y^2 – 3y + 5y – 5) $
$= 4k × [3y (y – 1) + 5(y – 1)] $
$= 4k × (y – 1)× (3y + 5) $
Therefore,
Possible length, breadth and height are 4k , (y – 1),(3y + 5)
Advanced courses and exam preparation.
Advanced courses and exam preparation.
Explore programming, data science, and AI.