Fast, Efficient and Scalable Solutions
Explore the comprehensive NCERT Textbook Solutions for Class IX.
Exponents means power
If we have 'a' and 'b' as the base and 'm' and 'n' as the exponents, then.
Example : $ { \sqrt 7 }= 7^{ 1 \over 2}$
Example : $ {\sqrt[3]{7} } = 7^{ 1 \over 3} $
Example : $ {2^3 × 2^4 }= 2^{3 + 4} = 2^7 $
Example : $ {3^5 \over { 3^2} }= 3^{5 - 2} = 3^3 $
Example : $ {(2^4 )^2 } =( 2^{4 × 2}) = 2^8 $
Example : $ {3^2 × 5^2 } = {(3×5)^2} = 15^2 $
Example : $ {7^0 } = 1 $
Example : $ {5^{-3} } = { 1 \over {5^3}}$
Find:
(i) $ {64^{1 \over 2} } $
Solution :
Given : $ {64^{1 \over 2} } $
Now, on simplifying it, we will get prime factors of 64 = 2 × 2 × 2 × 2 × 2 × 2
Hence, $$({ 2 × 2 × 2 × 2 × 2 × 2 })^{1 \over 2} $$
$$⇒ ({ 2^6})^{1 \over 2} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (2)^{ 6 ×{ 1 \over 2}} $$
$$⇒ 2^3 $$
$$⇒ 8 $$
Find:
(ii) $ {32^{1 \over 5} } $
Solution :
Given : $ {32^{1 \over 5} } $
Now, on simplifying it, we will get prime factors of 32 = 2 × 2 × 2 × 2 × 2
Hence, $$({ 2 × 2 × 2 × 2 × 2 })^{1 \over 5} $$
$$⇒ ({ 2^5})^{1 \over 5} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$ )
$$⇒ (2)^{ 5 ×{ 1 \over 5}} $$
$$⇒ 2^1 $$
$$⇒ 2 $$
Find:
(iii) $ {125^{1 \over 3} } $
Solution :
Given : $ {125^{1 \over 3} } $
Now, on simplifying it, we will get prime factors of 125 = 5 × 5 × 5
Hence, $$({ 5 × 5 × 5 })^{1 \over 3} $$
$$⇒ ({ 5^3})^{1 \over 3} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (5)^{ 3 ×{ 1 \over 3}} $$
$$⇒ 5^1 $$
$$⇒ 5 $$
Find:
(i) $ {9^{3 \over 2} } $
Solution :
Given : $ {9^{3 \over 2} } $
Now, on simplifying it, we will get prime factors of 9 = 3 × 3
Hence, $$({ 3 × 3})^{3 \over 2} $$
$$⇒ ({ 3^2})^{3 \over 2} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (3)^{ 2 ×{ 3 \over 2}} $$
$$⇒ 3^3 $$
$$⇒ 3 × 3 × 3 = 27 $$
Find:
(ii) $ {32^{2 \over 5} } $
Solution :
Given : $ {32^{2 \over 5} } $
Now, on simplifying it, we will get prime factors of 32 = 2 × 2 × 2 × 2 × 2
Hence, $$({ 2 × 2 × 2 × 2 × 2 })^{2 \over 5} $$
$$⇒ ({ 2^5})^{2 \over 5} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (2)^{ 5 ×{ 2 \over 5}} $$
$$⇒ 2^2 $$
$$⇒ 2 × 2 $$
$$⇒ 4 $$
Find:
(iii) $ {16^{3 \over 4} } $
Solution :
Given : $ {16^{3 \over 4} } $
Now, on simplifying it, we will get prime factors of 16 = 2 × 2 × 2 × 2
Hence, $$({ 2 × 2 × 2 × 2 })^{3 \over 4} $$
$$⇒ ({ 2^4})^{3 \over 4} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (2)^{ 4 ×{ 3 \over 4}} $$
$$⇒ 2^3 $$
$$⇒ 2 × 2 × 2 $$
$$⇒ 8 $$
Find:
(iv) $ {125^{-1 \over 3} } $
Solution :
Given : $ {125^{-1 \over 3} } $
Now, on simplifying it, we will get prime factors of 125 = 5 × 5 × 5
Hence, $$({ 5 × 5 × 5 })^{-1 \over 3} $$
$$⇒ ({ 5^3})^{-1 \over 3} $$
(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (5)^{ 3 ×{ -1 \over 3}} $$
$$⇒ 5^{-1} $$
( Now, According to Laws of Exponents = ${a^{-m} } = { 1 \over {a^m}}$)
$$⇒ { 1 \over 5}$$
Find:
(i) $ {2^{2 \over 3} } . {2^{1 \over 5} }$
Solution :
Given : $ {2^{2 \over 3} } . {2^{1 \over 5} }$
Hence, $$( {2^{2 \over 3} } × {2^{1 \over 5} }) $$
(According to Laws of Exponents = $ {a^m × a^n } = a^{m + n}$)
$$⇒ (2)^{{2 \over 3} +{1 \over 5}} $$
$$⇒ (2)^{{10 + 3} \over 15} $$
$$⇒ (2)^{13 \over 15} $$
Find:
(ii) $ { ({1 \over {3^3}})^7 }$
Solution :
Given : $ { ({1 \over {3^3}})^7 }$
( According to Laws of Exponents = ${a^{-m} } = { 1 \over {a^m}}$ )
$$⇒ { ({3^{-3}})^7 } $$
( Now, According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)
$$⇒ (3)^{{-3} × 7} $$
$$⇒ (3)^{-21} $$
Find:
(iii) $ {{11^ {1 \over 2}} \over {{11^ {1 \over 4}}}} $
Solution :
Given : $ {{11^ {1 \over 2}} \over {{11^ {1 \over 4}}}} $
( According to Laws of Exponents = $ {a^m \over { a^n} } = a^{m - n}$)
$$⇒ {(11)^{{1 \over 2}- {1 \over 4}}} $$
$$⇒ {(11)^{{2 - 1} \over 4}} $$
$$⇒ {11^ {1 \over 4}} $$
Find:
(iv) $ {7^{1 \over 2} } . {8^{1 \over 2} }$
Solution :
Given : $ {7^{1 \over 2} } . {8^{1 \over 2} }$
( According to Laws of Exponents = $ {a^m × b^m } = {(ab)^m} $)
$$⇒ {(7 × 8)^{1 \over 2} } $$
$$⇒ {(56)^{1 \over 2} } $$
$$⇒ {(56)^{1 \over 2} } $$
Advanced courses and exam preparation.
Advanced courses and exam preparation.
Explore programming, data science, and AI.